Biophysical environment
The biophysical environment is the biotic and abiotic surrounding of an organism or population, and consequently includes the factors that have an influence in their survival, development and evolution. The biophysical environment can vary in scale from microscopic to global in extent. It can also be subdivided according to its attributes. Examples include the marine environment, the atmospheric environment and the terrestrial environment. The number of biophysical environments is countless, given that each living organism has its own environment.
The symbiosis between the physical environment and the biological life forms within the environment includes all variables that comprise the Earth’s biosphere.
The biophysical environment can be divided into two categories: the natural environment and the built environment with some overlap between the two. Following the industrial revolution the built environment has become an increasingly significant part of the Earth's environment.
The scope of the biophysical environment is all that contained in the biosphere, which is that part of the Earth in which all life occurs.
When narrowed down to the aquatic environment, and particularly in the context of the Water Framework Directive, these are often referred to as water quality, water quantity and hydromorphology.
Mulching
A mulch is a layer of material applied to the surface of an area of soil. Its purpose is any or all of the following:
· to conserve moisture
· to improve the fertility and health of the soil
· to reduce weed growth
· to enhance the visual appeal of the area
Mulching as NWRM is using organic material (e.g. bark, wood chips, grape pulp, shell nuts, green waste, leftover crops, compost, manure, straw, dry grass, leaves etc.) to cover the surface of the soil. It may be applied to bare soil, or around existing plants. Mulches of manure or compost will be incorporated naturally into the soil by the activity of worms and other organisms. The process is used both in commercial crop production and in gardening, and when applied correctly can dramatically improve the capacity of soil to store water.
Low Impact Development
LID is a toolbox of site-scale practices that the site designer and developer can utilize to:
- manage urban rainfall where it occurs for minimized stormwater concentration and runoff
- potentially lower short-term and long-term development costs
- improve water quality
- enhance natural habitat and flood control
- improve green space aesthetics and potentially increase property values
- increase community quality of life and livability
There are many practices that are used to support these benefits, including bioretention systems, rain gardens, vegetated rooftops, bioswales, rain barrels, and permeable pavements to name a few. By implementing LID principles and practices, water can be managed in a way that reduces the impact of built areas on the environment while providing numerous additional benefits. (source: LID symposium).
This concept is very similar to NWRM in the United States context. It is very connected to Green Infrastructure. See also the link to US EPA green infrastructure website.
Water retention
Water retention covers a wide set of mechanisms (see synthesis document n°1) the effect of which are to increase the capture of water by aquifers, soil, and aquatic and water dependent ecosystems.
More precisely it refers to capabilities of catchments (including wetlands, rivers and floodplains but also other land areas) to hold or retain as much water as possible during periods of abundant or even excessive precipitation, so that water is available for use during dry periods and runoff peaks are minimized.
Urban Planning
Within the framework of natural water retention measures (NWRM), urban planning refers to the application of the "Grey to Green" principle within cities. The specific focus of urban planning for NWRM is to achieve sustainable water management by mimicking natural functions and processes in the urban environment.
Wetlands
Areas that are inundated by surface or ground water with frequency sufficient to support a prevalence of vegetative or aquatic life that requires saturated or seasonally saturated soil conditions for growth or reproduction.
Wetlands provide both stormwater attenuation and treatment, comprising shallow ponds and marshy areas covered in aquatic vegetation.ᅠ Wetlands detain flows for an extended period to allow sediments to settle and to remove contaminants.ᅠ They also provide runoff attenuation and can provide significant ecological benefits.
Resource cost
The cost linked the economic or relative scarcity of water once it is used.
Natural Water Retention Measure
Natural Water Retention Measures (NWRM) are multi-functional measures that aim to protect and manage water resources and address water-related challenges by restoring or maintaining ecosystems as well as natural features and characteristics of water bodies using natural means and processes. Their main focus is to enhance, as well as preserve, the water retention capacity of aquifers, soil, and ecosystems with a view to improving their status. NWRM have the potential to provide multiple benefits (see benefits table), including the reduction of risk of floods and droughts, water quality improvement, groundwater recharge and habitat improvement. The application of NWRM supports green infrastructure, improves or preserves the quantitative status of surface water and groundwater bodies and can positively affect the chemical and ecological status of water bodies by restoring or enhancing natural functioning of ecosystems and the services they provide (see ecosystem services). The preserved or restored ecosystems can contribute both to climate change adaptation and mitigation.
Supplementary measure
"Supplementary" measures are those measures designed and implemented in addition to the basic measures, with the aim of achieving the objectives established pursuant to Article 4 of the WFD. Part B of Annex VI contains a non-exclusive list of such measures. Member States may also adopt further supplementary measures in order to provide for additional protection or improvement of the waters covered by this Directive, including in implementation of the relevant international agreements referred to in Article 1.